G0W0R output clarification
VASP team,
In the wiki on the GW approximation, we see the example output for a G0W0R calculation.
Code: Select all
QP shifts evaluated in KS or natural orbital/ Bruckner basis
k-point 1 : 0.0000 0.0000 0.0000
band No. KS-energies sigma(KS) QP-e(linear) Z QP-e(zeros) Z occupation Imag(E_QP) QP_DIFF TAG
1 -7.1627 -8.6732 -8.2451 0.7166 -8.2346 0.7026 2.0000 -1.3101 0.0000 2
2 -2.0901 -3.4155 -3.0350 0.7129 -3.0272 0.7011 2.0000 -0.5582 -0.0000 2
3 -2.0901 -3.4155 -3.0350 0.7129 -3.0272 0.7011 2.0000 -0.5582 0.0000 2
4 -2.0901 -3.4155 -3.0350 0.7129 -3.0272 0.7011 2.0000 -0.5582 -0.0000 2
5 0.4603 -0.8219 -0.4904 0.7414 -0.4814 0.7273 2.0000 -0.1902 0.0000 2
6 0.4603 -0.8219 -0.4904 0.7414 -0.4814 0.7273 2.0000 -0.1902 -0.0000 2
The Imag(E_QP) column is labeled as "imaginary part of complex pole \(\omega\), i.e. measure for inverse lifetime of quasi-particle".
My question is how is Imag(E_QP) related to the inverse lifetime? Is it just a factor of \(\frac{2}{\hbar}\)? And how is Imag(E_QP) related to \(\mathrm{Im}\Sigma\)? Thanks!
Brian