Dear vasp users,
I'm trying to optimise a FeII SCO complex in the low-spin state (S = 0, d6, FeII), on a ferromagnetic Co(111) surface. The Co surface has a total of 147 Co atoms (ST = 147x3/2 = 441). However, the optimised geometry gives an S = 4 instead of S = 0 on the FeII metal centre. Could anyone please help me get the correct LS geometry of the FeII SCO complex on the ferromagnet Co(111) surface? I have attached the INCAR file and here is the POSCAR file.
Co_SCO
1.0
17.6972389221 0.0000000000 0.0000000000
-8.8486367607 15.3262837341 0.0000000000
0.0000000000 0.0000000000 30.0000000000
Co C H B N Fe
147 30 44 2 12 1
Selective Dynamics
Cartesian
-0.103323140 1.413006565 6.821719408 F F F
-1.390682053 3.619335651 6.860565841 F F F
-2.674403038 5.832967168 6.729810387 F F F
-3.897480741 8.041126258 6.763031781 F F F
-5.039177521 10.247723689 6.795065403 F F F
-6.348097056 12.340099435 6.703039259 F F F
-7.641259784 14.515970698 6.708413064 F F F
2.433356221 1.409998009 6.748370826 F F F
1.161478186 3.602282559 6.726901084 F F F
-0.138038631 5.787845332 6.710622311 F F F
-1.370247322 7.981068864 6.688297391 F F F
-2.544213953 10.183116063 6.811361611 F F F
-3.809034827 12.404026490 6.785029024 F F F
-5.104498675 14.572343875 6.683073342 F F F
4.962348280 1.442722725 6.678187698 F F F
3.696235071 3.629664338 6.758432239 F F F
2.403376147 5.795576432 6.604103297 F F F
1.164123534 7.971698913 6.750197858 F F F
-0.060804920 10.154990680 6.710670590 F F F
-1.308311127 12.345334805 6.786335707 F F F
-2.568451166 14.573283885 6.728337854 F F F
7.472416085 1.421680987 6.716138273 F F F
6.226401203 3.627435584 6.706066579 F F F
4.952219352 5.806679326 6.686628610 F F F
3.698884147 7.966563116 6.635893732 F F F
2.462026016 10.141989497 6.682815403 F F F
1.250274587 12.330991663 6.715020239 F F F
-0.039775854 14.517553824 6.762235165 F F F
9.993057397 1.389680119 6.689740419 F F F
8.736319606 3.615573100 6.690665334 F F F
7.459841882 5.811578978 6.681459993 F F F
6.228287201 7.996002138 6.746909469 F F F
4.980379648 10.169150205 6.658787280 F F F
3.770742125 12.348213299 6.724289507 F F F
2.472673349 14.522575431 6.755231917 F F F
12.532905380 1.425269969 6.759605259 F F F
11.257448947 3.611663472 6.706498414 F F F
9.957364877 5.809863849 6.735324562 F F F
8.739770690 8.009678411 6.711038500 F F F
7.530940670 10.167168785 6.725862622 F F F
6.312560638 12.359881661 6.717858464 F F F
5.015186451 14.552891430 6.745094508 F F F
15.037424687 1.449625493 6.849903613 F F F
13.745855960 3.675940861 6.799829900 F F F
12.433932913 5.880438115 6.778660119 F F F
11.241832835 8.078643516 6.747217923 F F F
10.039767522 10.206325808 6.779824197 F F F
8.810035892 12.366030548 6.721266210 F F F
7.507201856 14.568111548 6.743759215 F F F
1.311538263 0.656932901 4.448391348 F F F
1.156231236 0.731083646 9.138521254 T T T
-0.024052311 2.834161708 4.496783763 F F F
-0.016936628 2.940457486 9.172546864 T T T
-1.319790252 4.973826155 4.480723143 F F F
-1.308105408 5.080602214 9.058924913 T T T
-2.567892189 7.173601436 4.412439018 F F F
-2.620863210 7.268877677 8.883179426 T T T
-3.770783916 9.373370322 4.504753500 F F F
-3.937782862 9.447662149 9.176947474 T T T
-4.985763673 11.560373712 4.454315007 F F F
-5.183132737 11.655416093 8.933705986 T T T
-6.197717543 13.789063655 4.358959347 F F F
-6.409306171 13.845644201 9.050071836 T T T
3.852186152 0.742535789 4.368050247 F F F
3.714035015 0.661912714 8.936968446 T T T
2.518792551 2.853354030 4.471905380 F F F
2.522207945 2.887175881 9.113417566 T T T
1.253906752 5.004504819 4.306416661 F F F
1.237255231 5.108443950 8.832626045 T T T
-0.011795621 7.152927617 4.413881153 F F F
-0.117364968 7.278248542 9.109554291 T T T
-1.246217605 9.328807102 4.386525303 F F F
-1.374609627 9.404280107 9.144093096 T T T
-2.457643134 11.557639554 4.458197951 F F F
-2.628634986 11.587767367 9.172964394 T T T
-3.685143342 13.794117235 4.445062280 F F F
-3.844074429 13.810302028 9.112207890 T T T
6.319854416 0.674099154 4.393219203 F F F
6.276206715 0.618692764 8.928388059 T T T
5.116968990 2.928097820 4.419353306 F F F
5.029837958 2.804288766 9.091815948 T T T
3.806122783 5.029984655 4.349800497 F F F
3.718762937 5.064798358 9.086115360 T T T
2.535626953 7.188645245 4.306552559 F F F
2.478260597 7.247383520 9.044547379 T T T
1.297178147 9.346828065 4.404219389 F F F
1.202772727 9.424720065 9.089264274 T T T
0.038432113 11.541468463 4.406412542 F F F
-0.072325336 11.562821940 8.961111903 T T T
-1.201224539 13.749075332 4.479361027 F F F
-1.309661317 13.745168216 9.137310684 T T T
8.777119825 0.617857581 4.423086494 F F F
8.817836016 0.659255405 9.089043438 T T T
7.617501119 2.856924971 4.391446263 F F F
7.540715184 2.814139684 9.083143473 T T T
6.373033735 5.076309138 4.373636395 F F F
6.240850530 5.003641545 8.924300373 T T T
5.077893487 7.219494281 4.405453652 F F F
5.013358249 7.226284001 9.080867171 T T T
3.820098664 9.403763969 4.308316559 F F F
3.730546062 9.449540341 8.816832304 T T T
2.557364318 11.573210463 4.414628595 F F F
2.486146884 11.636166448 9.093823135 T T T
1.296418458 13.734191388 4.449487031 F F F
1.210978129 13.789392522 8.995768726 T T T
11.309807708 0.618578289 4.387945980 F F F
11.330816591 0.696498094 9.102655649 T T T
10.111351330 2.829340619 4.295714200 F F F
10.083546830 2.859654790 9.072505832 T T T
8.867470555 5.059657537 4.408285618 F F F
8.758196762 5.057275083 9.051753581 T T T
7.607663620 7.252401929 4.385219961 F F F
7.467030321 7.227026691 9.082773328 T T T
6.346021828 9.415850722 4.409803748 F F F
6.159788570 9.496175420 9.087878466 T T T
5.101411158 11.600181159 4.381451905 F F F
4.961671468 11.665048224 9.099613130 T T T
3.833741217 13.777127633 4.449380636 F F F
3.745352076 13.845001998 9.131741524 T T T
13.886815489 0.615820607 4.487594068 F F F
13.874427092 0.751151346 9.071753919 T T T
12.624835106 2.797740671 4.439956695 F F F
12.600542850 2.918577595 9.034439027 T T T
11.335911996 5.007565104 4.443435073 F F F
11.282158449 5.074723271 8.995618522 T T T
10.137036142 7.230149551 4.421473593 F F F
10.025630452 7.290312000 9.111176133 T T T
8.882377349 9.417026419 4.339157045 F F F
8.705533813 9.422006918 8.962869644 T T T
7.628401828 11.602803869 4.469277263 F F F
7.532379876 11.675044848 9.098154902 T T T
6.385184591 13.793046593 4.363136888 F F F
6.261514800 13.880858481 8.953337967 T T T
16.435813622 0.656958308 4.515227973 F F F
16.385997893 0.744664913 9.234461188 T T T
15.130133563 2.805207765 4.572047889 F F F
15.118036288 2.923052005 9.158283770 T T T
13.842308572 4.985304504 4.448495954 F F F
13.828449491 5.071331380 9.158774614 T T T
12.622947750 7.225994873 4.452464730 F F F
12.549253619 7.234108737 9.165876210 T T T
11.412158044 9.438124111 4.509701729 F F F
11.276027047 9.420303207 9.005513191 T T T
10.155139838 11.629378098 4.430657029 F F F
9.976690309 11.636557434 9.214460850 T T T
8.928905503 13.805908922 4.401325285 F F F
8.759921518 13.849394191 8.963755667 T T T
6.480814414 4.837381781 17.328595519 T T T
6.021414372 5.351920167 18.651028275 T T T
6.166442573 4.746970478 19.909710288 T T T
5.614630162 5.631364318 20.836726427 T T T
5.471281312 5.492308197 22.315734029 T T T
0.778632701 7.874395575 17.313135266 T T T
1.440246838 7.938747416 18.648757339 T T T
0.833302745 7.946204461 19.915990233 T T T
1.870370005 7.996823390 20.846174955 T T T
1.807829733 7.999901031 22.337211370 T T T
6.262084206 11.259780714 17.295261025 T T T
6.009663836 10.644165705 18.630514741 T T T
6.389437543 11.126185145 19.893654585 T T T
5.896961776 10.214334617 20.826112032 T T T
6.026319672 10.221807192 22.312281132 T T T
2.522341012 11.157921663 17.634043694 T T T
2.980699136 10.645310343 16.309481263 T T T
2.833302826 11.249037746 15.052700043 T T T
3.384322526 10.365205719 14.120743275 T T T
3.522280362 10.506324106 12.642732561 T T T
8.217445024 8.125155270 17.654825449 T T T
7.559415226 8.060348497 16.316242218 T T T
8.167724279 8.052653024 15.051818490 T T T
7.132550979 8.002087993 14.116301537 T T T
7.200259954 8.000551456 12.626831532 T T T
2.741088617 4.742584222 17.672166824 T T T
2.990723954 5.355636357 16.333878636 T T T
2.608301551 4.873710096 15.073682070 T T T
3.100519412 5.783554539 14.135635793 T T T
2.968248585 5.772881912 12.650809586 T T T
5.720893924 4.978181350 16.549249291 T T T
6.719265624 3.768539126 17.404907942 T T T
7.387268240 5.362839445 16.991297007 T T T
6.616264273 3.782047540 20.123648643 T T T
6.066632676 6.240755530 22.860277891 T T T
5.804777004 4.495506461 22.630269527 T T T
4.425534120 5.618514321 22.632892728 T T T
-0.029442862 8.617763294 17.246757746 T T T
0.325745343 6.884313219 17.148857117 T T T
1.492037647 8.059668840 16.503565907 T T T
-0.230017337 7.915590656 20.134431124 T T T
2.205910427 7.064600047 22.760986090 T T T
0.766362045 8.102240592 22.666842341 T T T
2.390205189 8.825136379 22.771283984 T T T
6.146563431 10.529772278 16.486968398 T T T
7.278079616 11.676860921 17.251501679 T T T
5.557853098 12.084582140 17.103211284 T T T
6.953902296 12.028866696 20.107768178 T T T
5.049532725 10.141059536 22.810387015 T T T
6.502972850 11.154796519 22.638430595 T T T
6.642948641 9.382078886 22.668240666 T T T
4.500139830 8.004339814 21.863942742 T T T
3.282331649 11.016414118 18.413536549 T T T
2.284232360 12.227084506 17.559328079 T T T
1.615188618 10.633558851 17.971900105 T T T
2.381495790 12.213062010 14.838709831 T T T
2.920231034 9.765030073 12.090368271 T T T
3.195353405 11.505297730 12.324038744 T T T
4.562789238 10.372473666 12.308574915 T T T
9.025443847 7.381727716 17.723962069 T T T
8.670274102 9.115159977 17.820886374 T T T
7.502012680 7.939723053 18.462871313 T T T
9.231255327 8.083969324 14.834432602 T T T
6.805930526 8.936071227 12.194785774 T T T
8.241042527 7.896910132 12.291803956 T T T
6.616750542 7.179875475 12.180764973 T T T
2.858122555 5.473917259 18.479332924 T T T
1.724776491 4.326187783 17.719037533 T T T
3.444639092 3.917220526 17.865205407 T T T
2.042656434 3.971405828 14.860876501 T T T
3.942030298 5.855135959 12.141921222 T T T
2.492194027 4.840850864 12.317828536 T T T
2.352277045 6.611525415 12.286557555 T T T
4.502885059 7.991538690 13.092014194 T T T
4.492010201 7.999710106 20.662452579 T T T
4.509992549 7.997200673 14.292291999 T T T
5.401771595 6.546651956 18.803202510 T T T
2.783921121 7.986291444 18.801276684 T T T
5.319405758 9.491160208 18.787933588 T T T
5.173175170 6.712581940 20.144448280 T T T
3.035517259 8.024556874 20.147868991 T T T
5.252004028 9.237856366 20.134034157 T T T
3.601536782 9.449137480 16.155915856 T T T
6.214131261 8.012538635 16.160736680 T T T
3.683672133 6.508863383 16.173380613 T T T
3.827624011 9.284202773 14.812664688 T T T
5.965930118 7.973646533 14.812331200 T T T
3.749212868 6.759349479 14.825433791 T T T
4.500439409 8.000141286 17.464452982 T T T
Regards
Rupesh Tiwari
Optimisation of FeII ls SCO on ferromagnetic Co(111) surface
Moderators: Global Moderator, Moderator
-
- Newbie
- Posts: 5
- Joined: Tue Jun 15, 2021 7:41 am
Optimisation of FeII ls SCO on ferromagnetic Co(111) surface
You do not have the required permissions to view the files attached to this post.
-
- Global Moderator
- Posts: 505
- Joined: Mon Nov 04, 2019 12:41 pm
- Contact:
Re: Optimisation of FeII ls SCO on ferromagnetic Co(111) surface
I moved this question from Bug reports to the 'From users to users' forum since this does not look like a case where there is a bug in the code.
Perhaps some users with experience in this type of calculations can help you with it.
Maybe I could help, but I am not sure if I understand your question.
Could you show me what you obtain in the output (for example OUTCAR file) and what you would expect/want to obtain?
Perhaps some users with experience in this type of calculations can help you with it.
Maybe I could help, but I am not sure if I understand your question.
Could you show me what you obtain in the output (for example OUTCAR file) and what you would expect/want to obtain?
-
- Newbie
- Posts: 5
- Joined: Tue Jun 15, 2021 7:41 am
Re: Optimisation of FeII ls SCO on ferromagnetic Co(111) surface
We are trying to optimize a Fe(II) complex on a ferromagnetic Co (111) surface where the Fe is in a low spin state. So we used magmom to specify the magnetic moment where we specified the last atom(iron) to be 0. but after any step of optimisation vasp is assigning spin density of 4 on the Fe centre despite we specifying it to be 0. magmom used is 147*3 30*0 44*0 2*0 12*0 1*0. here 147 is cobalt atom all having ferromagnetic state so all positive 3 and Fe in low spin so 0 in spin density.
I used DFT + U for Fe as U=3 J=0.9. but still no change. How can I force the Fe to be in Low spin state.
I have attached the OUTCAR file in here
I used DFT + U for Fe as U=3 J=0.9. but still no change. How can I force the Fe to be in Low spin state.
I have attached the OUTCAR file in here
You do not have the required permissions to view the files attached to this post.
-
- Global Moderator
- Posts: 505
- Joined: Mon Nov 04, 2019 12:41 pm
- Contact:
Re: Optimisation of FeII ls SCO on ferromagnetic Co(111) surface
I think I understand your question better.
You want to keep the electronic occupations fixed during the ionic relaxation.
You can do that using the ISMEAR=-2 tag:
https://www.vasp.at/wiki/index.php/ISMEAR
Be careful to double-check that the occupations that you set initially are the ones that you desire.
You can do that by first running a simple SCF run (without ionic relaxation) and checking the occupations in the OUTCAR file.
If they are what you desire, you can restart your calculation from the WAVECAR setting ISMEAR=-2.
I would advise to triple-check with 2 ionic steps (NSW=2) if the occupations you get at the end of the run are still the ones you expect, and only then do the full ionic relaxation.
You want to keep the electronic occupations fixed during the ionic relaxation.
You can do that using the ISMEAR=-2 tag:
https://www.vasp.at/wiki/index.php/ISMEAR
Be careful to double-check that the occupations that you set initially are the ones that you desire.
You can do that by first running a simple SCF run (without ionic relaxation) and checking the occupations in the OUTCAR file.
If they are what you desire, you can restart your calculation from the WAVECAR setting ISMEAR=-2.
I would advise to triple-check with 2 ionic steps (NSW=2) if the occupations you get at the end of the run are still the ones you expect, and only then do the full ionic relaxation.